المعين No Further a Mystery

نختار الطريقة المناسبة لحساب مساحة المعين حسب المعطيات الموجودة في المسألة، وسنشرح ذلك بأمثلةٍ في الفقرة التالية..

عند توصيل نقاط المنتصف لأضلاع المعين مع بعضها يمكننا الحصول على مستطيل داخل المعين.

المعين هو من الأشكال الهندسية الرباعية؛ أي أنه يتكون من أربعة أضلاع، وهو يشبه متوازي الأضلاع، لكن يختلف عنه في أن أطوال أضلاعه تكون متساويةً، له أربع زاويا، كل زاويتين متقابلتين فيه تكون متساويتين، وكل ضلعين متقابلين فيه متوازيان.

يُكتب المحتوى على ويكي هاو بأسلوب الويكي أو الكتابة التشاركية؛ أي أن أغلبية المقالات ساهم في كتابتها أكثر من مؤلف، عن طريق التحرير والحذف والإضافة للنص الأصلي.

قوانين حساب محيط المثلث يمكن حساب محيط أي مثلث حسب القانون الآتي: محيط المثلث = مجموع أطوال أضلاعه...

دور الذكاء الاصطناعي في رصد تفشي فيروس كورونا المستجد؟

يمكن أيضاً حساب ارتفاع المعين اعتماداً على قِيَم الأقطار، بالإضافة إلى طول أحد أضلاع المعين، وقيمة المساحة، وذلك باستخدام المعادلتين الآتيتين:[٢]

تعرف مساحة المعين بأنها الحيز المحصور داخل المعين في المستوى ثنائي الأبعاد،[٢] ويمكن التعبير عنها رياضيًا حسب العلاقات الآتية:[٣]

أقطار المعين عمودية على بعضها وتصنع أربعة مثلثات قائمة من نقطة التقاطع.

المعين ويُلفظ بضمّ الميم، هو أحد الأشكال الهندسية رباعي الأضلاع ( مُضلّع رباعي بسيط) تتساوى أطوال هذه الأضلاع جميعها، أو يمكن تعريفه على أنه شكلٌ يتكوّن read more من مثلَثَين متساويَي الساقَين لهما قاعدة مشتركة وهذه القاعدة المشتركة محذوفةً، ويُعتبر على أنّه متوازي الأضلاع الضلعَين المتجاوبين فيه متساويَين، وكونَ المعين من المضلّعات فإنّ له محيطاً ومساحةً بقوانينَ خاصةٍ به.

لحساب مساحة المعين ، ما عليك سوى استخدام الصيغة التالية.

المعين عبارة عن شكل هندسي ثنائي الأبعاد (طول و عرض)، يتكون من أربع أضلاع (كالمربع و المستطيل).

يحمل المعين جميع خواص متوازي الأضلاع، بالإضافة إلى هذه الخصائص:

 ويمكن تمثيل المساحة عن طريق حسابات المثلث بالقانون الآتي:

حساب مساحة المعين اعتماداً على طول الأقطار: يمكن حساب مساحة المعين باستخدام القانون الآتي:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comments on “المعين No Further a Mystery”

Leave a Reply

Gravatar